CALCULUS MEMO

May/June 2019

7.1
$$f(x) = x^{2} + 2$$

$$f(x+h) = (x+h)^{2} + 2$$

$$= x^{2} + 2xh + h^{2} + 2$$

$$f(x+h) - f(x) = x^{2} + 2xh + h^{2} + 2 - (x^{2} + 2)$$

$$= 2xh + h^{2}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2}}{h}$$

$$= \lim_{h \to 0} (2x+h)$$

$$= 2x$$

$$f'(x) = \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} (2x+h)$$

$$= 2x$$

$$f'(x) = \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} (2x+h)$$

$$= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} + 2 - (x^{2} + 2)}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2}}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2}}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2}}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} (2x+h)$$

$$= \lim_{h \to 0} (2x+h)$$

$$= \lim_{h \to 0} (2x+h)$$

$$= 2x$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh + h^{2} + 2)$$

$$f(x+h) = (x^{2} + 2xh$$

7.2.1
$$y = 4x^{3} + 2x^{-1}$$
 $\frac{dy}{dx} = 12x^{2} - 2x^{-2}$ (3)

7.2.2 $y = 4\sqrt[3]{x} + (3x^{3})^{2}$ $= 4x^{\frac{1}{3}} + 9x^{6}$ (4)

7.3 Point of contact: $(1;5)$ $m = 2$ $y - y_{1} = m(x - x_{1})$ or $y = 2x + c$ $y - 5 = 2(x - 1)$ (5) $y = 2x + 3$ (4)

7.3 $y = 4x^{3} + 2x^{-1}$ (5) $y = 2x + c$ $y = 2x + c$ $y = 2x + 3$ $y = 2x$

NSC JUNE 2021

8.1	$f(x) = 3x^2$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h}$ $f'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 3x^2}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h}$	✓ substitution
	$f'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 3x^2}{h}$	✓ expansion
	$=\lim_{h\to 0}\frac{6xh+3h^2}{h}$	✓ simplification
	$= \lim_{h \to 0} \frac{h(6x+3h)}{h}$	$\checkmark \lim_{h \to 0} \frac{h(6x+3h)}{h}$
	=6x	√6x
		(5)
8.2.1	$f(x) = x^2 - 3 + 9x^{-2}$	$\checkmark 9x^{-2}$
	$f(x) = x^{2} - 3 + 9x^{-2}$ $f'(x) = 2x - 18x^{-3}$	$\checkmark 2x$ $\checkmark -18x^{-3}$
		$\sqrt{-18x^{-3}}$
		(3)

8.2.2	$g(x) = (\sqrt{x} + 3)(\sqrt{x} - 1)$	1
	$g(x) = x + 2x^{\frac{1}{2}} - 3$	$\checkmark x \checkmark 2x^{\frac{1}{2}}$
	_1	$\sqrt{1} \sqrt{x^{-\frac{1}{2}}}$
		(4)
		[12]

NSC NOV 2020

QUESTION/VRAAG 7

Penalty of – 1 for notation only in 7.1

Penalty of	of – 1 for notation only in 7.1	
7.1	$f(x) = 2x^2 - 1$	
	$f(x+h) = 2(x+h)^2 - 1$	
	$=2(x^2+2xh+h^2)^2-1$	
	$=2x^{2}+4xh+2h^{2}-1$	$\checkmark 2x^2 + 4xh + 2h^2 - 1$
	$f(x+h)-f(x)=2x^2+4xh+2h^2-1-(2x^2-1)$	
	$=2x^2+4xh+2h^2-1-2x^2+1$	$\checkmark 4xh + 2h^2$
	$=4xh+2h^2$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$=\lim_{h\to 0}\frac{4xh+2h^2}{h}$	✓ substitution
	$= \lim_{h \to 0} \frac{h(4x + 2h)}{h}$	✓ simplification
	$= \lim_{h \to 0} (4x + 2h)$	
	$n \rightarrow 0$ $= 4x$	✓ answer (5)
7.2.1	$\frac{d}{dx}\left(\sqrt[5]{x^2} + x^3\right)$	(3)
	$=\frac{d}{dx}\left(x^{\frac{2}{5}}+x^3\right)$	$\sqrt{x^{\frac{2}{5}}}$ $\sqrt{\frac{2}{5}}x^{-\frac{3}{5}} \sqrt{3}x^{2}$
	$\frac{dy}{dx} = \frac{2}{5}x^{-\frac{3}{5}} + 3x^2$	$\checkmark \frac{2}{5}x^{-\frac{3}{5}} \checkmark 3x^2$ (3)
7.2.2	$4r^2 - 9$	` ` `
	$f(x) = \frac{4x^2 - 9}{4x + 6}$	
	$=\frac{(2x-3)(2x+3)}{2(2x+3)}$	$\checkmark (2x-3)(2x+3)$ $\checkmark 2(2x+3)$
	2(2x+3)	v 2(2x+3)
	$=\frac{2x-3}{2}$	
	$=x-\frac{3}{2}$	✓ simplification to two
	2	✓ simplification to two separate terms
	f'(x)=1	✓ answer
		(4) [12]
		[12]

9.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$f'(x) = \lim_{h \to 0} \frac{2(x+h)^2 - 3(x+h) - (2x^2 - 3x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 - 3x - 3h - 2x^2 + 3x}{h}$	✓substitution	
	$f'(x) = \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 - 3x - 3h - 2x^2 + 3x}{h}$	$\checkmark 2x^2 + 4xh + 2h^2 - 3x - 3h$	
	$=\lim_{h\to 0}\frac{4xh+2h^2-3h}{h}$	$\checkmark 4xh + 2h^2 - 3h$	
	$=\lim_{h\to 0}\frac{h(4x+2h-3)}{h}$	✓ factorisation	
	$=\lim_{h\to 0} (4x+2h-3)$		
	$\therefore f'(x) = 4x - 3$	✓answer	(5)
	OR/OF	OR/OF	
	$f(x) = 2x^2 - 3x$		
	$f(x+h) = 2(x+h)^2 - 3(x+h)$	✓substitution	
	$f(x+h) = 2x^2 + 4xh + 2h^2 - 3x - 3h$	$\checkmark 2x^2 + 4xh + 2h^2 - 3x - 3h$	
	$f(x+h) - f(x) = 4xh + 2h^2 - 3h$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$= \lim_{h \to 0} \frac{4xh + 2h^2 - 3h}{h}$	$\checkmark 4xh + 2h^2 - 3h$	
	$=\lim_{h\to 0}\frac{h(4x+2h-3)}{h}$	✓ factorisation	
	$=\lim_{h\to 0} (4x+2h-3)$		
	$\therefore f'(x) = 4x - 3$	✓answer	(5)
9.2.1	$y = 4x^5 - 6x^4 + 3x$.,
	dv	✓ 20x ⁴	
	$\frac{dy}{dx} = 20x^4 - 24x^3 + 3$	$\checkmark -24x^3$	
		✓3	(3)
		l	

MAY /JUNE 2019

8.1	$h(x) = -2(x + \frac{3}{2})(x - 1)(x + 3)$	$\sqrt{-2(x+\frac{3}{2})(x-1)(x+3)}$
	$h(x) = -(2x+3)(x^2+2x-3)$	✓ correct simplification
	$h(x) = -2x^3 - 7x^2 + 9$	(3)
	OR/OF	OR/OF
	h(x) = -(2x+3)(x-1)(x+3)	$\checkmark \checkmark -(2x+3)(x-1)(x+3)$
	$h(x) = -(2x+3)(x^2+2x-3)$	✓ correct simplification (3)
	$h(x) = -2x^3 - 7x^2 + 9$	(3)
8.2	$h'(x) = -6x^2 - 14x$	
	$-6x^2 - 14x = 0$	✓ first derivative ✓ = 0
	-2x(3x+7)=0	
	$x = 0$ or $x = -\frac{7}{3}$	✓ both answers
	3	(3)
8.3	$x < -\frac{7}{3}$ or $x > 0$	✓✓ answer
	3 OR/ <i>OF</i>	OR/ <i>OF</i> (2)
	$x \in \left(-\infty; -\frac{7}{3}\right) \cup \left(0; \infty\right)$	✓✓ answer
	(3)	(2)

8.4	y = 4x + 7	$\checkmark y = 4x + 7$
	$-6x^2 - 14x = 4$	y = 4x + 7 $h'(x) = 4$
	$y = 4x + 7$ $-6x^{2} - 14x = 4$ $0 = 6x^{2} + 14x + 4$	
	$0 = 3x^2 + 7x + 2$	✓ standard form
	$0 = 3x^{2} + 7x + 2$ 0 = (3x+1)(x+2)	
	$x = -\frac{1}{3}$ or $x = -2$	✓ both answers
	$\frac{x-3}{3}$ or $x-2$	(4)
		[12]

JUNE 2017

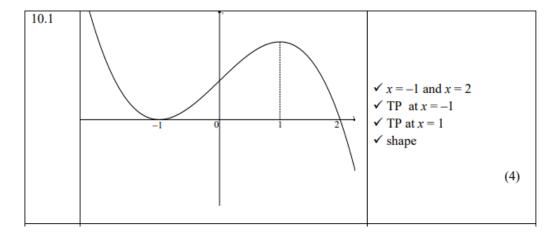
9.1	(0;1)	✓ answer
9.2	$f(x) = x^3 - x^2 - x + 1$	(1)
	$f(x) = x^{2}(x-1) - (x-1)$ $f(x) = (x-1)(x^{2}-1)$	$\begin{array}{c} \checkmark (x-1) \\ \checkmark (x^2-1) \\ \checkmark (x-1)(x-1)(x+1) \end{array}$
	f(x) = (x-1)(x-1)(x+1) f(x) = 0	$\checkmark (x-1)(x-1)(x+1)$
	(x-1)(x-1)(x+1) = 0 x-intercepts: $(-1; 0); (1; 0)$	✓(-1; 0) ✓(1; 0)
	OR	(5)
	$f(x) = x^{3} - x^{2} - x + 1$ $f(x) = (x - 1)(x^{2} - 1)$ $f(x) = (x - 1)(x - 1)(x + 1)$ $f(x) = 0$	$\checkmark (x-1)$ $\checkmark (x^2-1)$ $\checkmark (x-1)(x-1)(x+1)$
	(x-1)(x-1)(x+1) = 0 x-intercepts: $(-1; 0); (1; 0)$	✓(-1; 0) ✓(1; 0)
	OR	(5)

99/11	-
$f(x) = x^{3} - x^{2} - x + 1$ $f(x) = (x+1)(x^{2} - 2x + 1)$ $f(x) = (x+1)(x-1)(x-1)$ $f(x) = 0$ $(x-1)(x-1)(x+1) = 0$ x-intercepts: (-1; 0); (1; 0)	$ √(x+1) √(x^2-2x+1) √(x-1)(x-1)(x+1) $ √(-1; 0) √(1; 0) (5)
9.3 $f(x) = x^{3} - x^{2} - x + 1$ $f'(x) = 3x^{2} - 2x - 1$ $f'(x) = 0$ $(3x+1)(x-1) = 0$ $x = -\frac{1}{3} \text{ or } x = 1$ $y = \frac{32}{27} \qquad y = 0$ $\left(-\frac{1}{3}; \frac{32}{27}\right) (1; 0)$	✓ $f'(x) = 3x^2 - 2x - 1$ ✓ $f'(x) = 0$ ✓ factorisation ✓ x value ✓ x value ✓ $y = \frac{32}{27}$ (6)
9.4 $\frac{\left(\frac{1}{2}\frac{20}{2}\right)}{(-1;0)}$ $(0;1)$	✓y- and x-intercepts ✓shape ✓turning points (3)
9.5 $f'(x) < 0$ $-\frac{1}{3} < x < 1$ OR/OF $(-\frac{1}{3}; 1)$	$\checkmark x > -\frac{1}{3}$ $\checkmark x < 1$ $\checkmark (-\frac{1}{3})$ $\checkmark (1)$ (2)
	[17]

8.1	-1 < x < 2	✓✓ answer (2)
8.2	$x = \frac{-1+2}{2}$ $x = \frac{1}{2}$ Answer Only: Full Marks	✓ method ✓ answer (2)
8.3	From the graph $x > \frac{1}{2}$ Answer Only: Full Marks	✓✓ answer (2)
8.4	$g(x) = ax^{3} + bx^{2} + cx$ $g'(x) = 3ax^{2} + 2bx + c = -6x^{2} + 6x + 12$ $3a = -6. 2b = 6 c = 12$ $a = -2 b = 3$ $g(x) = -2x^{3} + 3x^{2} + 12x$	$ ✓ g'(x) = 3ax^{2} + 2bx + c $ $ ✓ a = -2 $ $ ✓ b = 3 $ $ ✓ g(x) = -2x^{3} + 3x^{2} + 12x $ (4)
8.5	$g'\left(\frac{1}{2}\right) = -6\left(\frac{1}{2}\right)^{2} + 6\left(\frac{1}{2}\right) + 12$ $m = \frac{27}{2} \text{or } 13,5$ $y = -2\left(\frac{1}{2}\right)^{3} + 3\left(\frac{1}{2}\right)^{2} + 12\left(\frac{1}{2}\right)$ $y = \frac{13}{2} \text{or } 6,5$ $y - y_{1} = m(x - x_{1})$ $y - 6,5 = 13,5(x - 0,5)$ $y = 13,5x - 0,25$	✓ max gradient at $x = \frac{1}{2}$ ✓ answer ✓ y value ✓ substitution ✓ answer (5)
		[15]
		[15]

MAY/JUNE 2021

9.1	$f'(x) = 6x^2 + 6x - 12$	$\checkmark 6x^2 + 6x - 12$
	$6x^2 + 6x - 12 = 0$	✓ = 0
	$x^2 + x - 2 = 0$	
	(x+2)(x-1) = 0	✓factors
	x = -2 or $x = 1$	✓ x -values
	y = 20 or $y = -7$	✓ x -values ✓ y -values
	\therefore A(-2; 20) and B(1; -7)	y-values
		(5)
9.2	f''(x) = 12x + 6	$\sqrt{12x+6}$
	12x + 6 > 0	$\checkmark f''(x) > 0$
	12x > -6	
	$x > -\frac{1}{2}$	$\checkmark x > -\frac{1}{2}$
	2	$\frac{1}{2}$
	OR/OF	(3)
	$x = \frac{-2+1}{2} = -\frac{1}{2}$	OR/OF
		$\checkmark x = -\frac{1}{2}$ $\checkmark \checkmark x > -\frac{1}{2}$
	$\therefore x > -\frac{1}{2}$	2
	2	$\sqrt{x} > -\frac{1}{2}$
		(3)
9.3	f'(2) = 24	✓ f'(2)
		✓ 24
	Equation of the tangent: $y-4=24(x-2)$	✓ equation
	y = 24x - 44	(3)
		[11]


10.1	$h(x) = ax^3 + bx^2$	
	$h'(x) = 3ax^2 + 2bx$	$\checkmark h'(x)$
	h'(4) = 0	
	48a + 8b = 0	$\checkmark h'(4) = 0$
	6a + b = 0(1)	$\checkmark 48a + 8b = 0 \text{ or } 6a + b = 0$
	0a+b=0(1)	
	h(4) = 32	$\checkmark h(4) = 32$
	64a + 16b = 32	$\checkmark h(4) = 32$ $\checkmark 64a + 16b = 32 \text{ or } 4a + b = 2$
	4a + b = 2(2)	$\sqrt{64a + 10b} = 32$ or $4a + b = 2$
	(1) (2) (
	(1)- (2) : $6a + b = 04a + b = 2$	
	4 <i>a</i> + <i>b</i> - 2	
	2a = -2	
	a = -1	
	4(-1) + b = 2	
	4(-1) + b = 2 b = 6	(5)
10.2	$h(x) = -x^3 + 6x^2$	
	$-x^3 + 6x^2 = 0$	$\checkmark - x^3 + 6x^2 = 0$
	$x^{2}(-x+6)=0$	✓ factors
	x=0 or $x=6$	
	∴ A(6;0)	✓ A(6;0)
		(3)
10.3.1	$0 < x < 4$ or $0 \le x \le 4$	✓ critical values
		✓notation (2)
	OR/OF	OR/OF
	$x \in (0; 4)$ or $x \in [0; 4]$	✓ critical values
	x = (0, 4) or x = [0, 4]	✓notation (2)
10.3.2	x > 2	✓ 2
		✓ notation (2)
	OR/OF	OR/OF
		0.00
	$x \in (2; \infty)$	✓ 2
10.1		✓ notation (2)
10.4	$f(x) = h(x-1) = -(x-1)^3 + 6(x-1)^2$	✓ k < 32
	f(0) = 7	✓ new y-intercept = 7
	$7 < k < 32$ or $k \in (7; 32)$	✓ 7 < k < 32
		(3)
		[15]
	I .	

Nov 2018

QUESTION/VRAAG9

0.1.1		
9.1.1	$g(x) = (x+5)(x-x_1)^2$	$\checkmark (x+5)$
	$20 = 5(x_1)^2$	
	$x_1^2 = 4$	
	$x_1 = 2$	✓repeated root
	$g(x) = (x+5)(x-2)^2$	$\checkmark x_1 = 2$
	$g(x) = (x+5)(x^2-4x+4)$	2 4 5 4 5 4 5
	$g(x) = x^3 + x^2 - 16x + 20$	$\checkmark g(x) = (x+5)(x^2-4x+4)$
9.1.2	$g(x) = x^3 + x^2 - 16x + 20$	(4)
7.1.2	g(x) = x + x - 16x + 20 $g'(x) = 3x^2 + 2x - 16$	✓ derivative
	$g(x) = 3x^{2} + 2x - 16$ $3x^{2} + 2x - 16 = 0$	
	$3x^{2} + 2x - 16 = 0$ $(3x + 8)(x - 2) = 0$	✓ equating to zero ✓ factors
		V factors
	$x = \frac{-8}{3}$ or $x = 2$	
	$R\left(\frac{-8}{3}, \frac{1372}{27}\right)$ or $R(-2,67,50,81)$	(an andimeter of D
	$(\frac{1}{3}, \frac{1}{27})$ or $(-2, 07, 50, 81)$	✓ co-ordinates of R ✓ co-ordinates of P
	P(2;0)	(5)
9.1.3	g''(x) = 6x + 2	$\checkmark g''(x) = 6x + 2$
	g''(0) = 2	$\checkmark g''(0) = 2$
	∴ concave up	✓ conclusion (3)
	OR/OF	OR/OF
	g''(x) = 6x + 2	$\checkmark g''(x) = 6x + 2$
	6x + 2 = 0	$\checkmark x = -\frac{1}{3}$
	$x = -\frac{1}{3}$ is the point of inflection	3
	,	✓ conclusion
	∴ concave up	(3)

JUNE 2021

9.1	$f'(x) = 9x^2$	$\checkmark f'(x) = 9x^2$
	$3x^3 = 9x^2$	
	$3x^3 - 9x^2 = 0$	
	$3x^2(x-3) = 0$	$\checkmark x = 0$
	x = 0 or $x = 3$	$\checkmark x = 3 \tag{3}$
9.2.1	For f and f'	✓ answer (1)
9.2.2	The point $(0; 0)$ is: A point of inflection of f A turning point of f'	✓ f: inflection point ✓ f': turning point (2)
9.3	f''(x) = 18x	$\checkmark f''(x) = 18x$
	Distance = $f''(1) - f'(1)$	
	$=18(1)-9(1)^2$	✓substitution
	= 9	✓answer (3)
9.4	$3x^3 - 9x^2 < 0$	$\checkmark 3x^3 - 9x^2 < 0$
	$3x^2(x-3) < 0$	✓ factors
	but $3x^2 > 0$	
	$\therefore x-3<0$	
	$\therefore x < 3, \ x \neq 0$	√ x<3
		✓ x≠0 (4)
		[13]

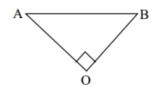
QUESTION/VRAAG 11

11	$Time = \frac{20}{}$	✓ 20
	$Cost = (water cost per hour \times time) + (kms \times R/km)$	x
	$C(x) = 1.6 \times \left(\frac{20}{x}\right) + 20\left(1.2 + \frac{x}{4000}\right)$	$\checkmark 1,6 \times \left(\frac{20}{x}\right)$
	22	$\checkmark 20 \left(1.2 + \frac{x}{4000}\right)$
	$C(x) = \frac{32}{x} + 24 + \frac{x}{200}$	$\checkmark C(x) = \frac{32}{x} + 24 + \frac{x}{200}$
	$C'(x) = -\frac{32}{x^2} + \frac{1}{200} = 0$	$\checkmark C(x) = \frac{32}{x} + 24 + \frac{x}{200}$ $\checkmark C'(x) = -\frac{32}{x^2} + \frac{1}{200}$ $\checkmark C'(x) = 0$
	$x^2 = 6400$	
	x = 80 km/h	✓ answer (A)
		[7]

NOV 2020

0.1	Total surface area = $2\ell w + 2wh + 2\ell h$	$\checkmark 2\ell w + 2wh + 2\ell h$
9.1		
	but: $\ell = 3w$	$\checkmark \ell = 3w$
	Total surface area = $6w^2 + 2wh + 6wh$	
	$C = 15(6w^2) + 6(2wh + 6wh)$	$\checkmark 15(6w^2)$ $\checkmark 6(2wh + 6wh)$
		(6(2) th + 6; th)
	$=15(6w^2)+6(8wh)$	$\mathbf{v} = \mathbf{o}(2wn + \mathbf{o}wn)$
	$=90w^2+48wh$	40
		(4)
9.2	$5 = 3w^2h$	
	$h = \frac{5}{3w^2}$	$\checkmark h = \frac{5}{3w^2}$
	$n = \frac{3w^2}{3w^2}$	$n = 3w^2$
	$C = 90w^2 + 48wh$	
	$\sigma()$ as $\tau = (5)$	
	$C(w) = 90w^2 + 48w \left(\frac{5}{3w^2}\right)$	✓ substitution
	$=90w^2 + 80w^{-1}$	$\checkmark C(w) = 90w^2 + 80w^{-1}$
	$C'(w) = 180w - 80w^{-2}$	✓ derivative
	$180w - 80w^{-2} = 0$	✓ equating derivative to zero
		equaling derivative to zero
	$180w^3 - 80 = 0$	
	$w^3 = \frac{80}{180}$	
	180	
	80	
	$w = \sqrt[3]{\frac{80}{180}}$	
	w = 0.76	✓ value of w
		(6)
		[10]

JUNE 2021


10.2.1

Area of segment = $\frac{1}{4}$ Area of big circle

$$=\frac{1}{4}\pi (x-x^2)^2$$

 $\checkmark \checkmark \frac{1}{4}\pi (x-x^2)^2$

Area triangle ABO counted

$$= \text{Area } \Delta = \frac{1}{2} (x - x^2)^2$$

 $\checkmark \text{ Area } \Delta = \frac{1}{2} (x - x^2)^2$

Area of shaded region

$$= \frac{1}{4}\pi(x-x^2)^2 - \frac{1}{2}(x-x^2)^2$$

$$= \frac{\pi - 2}{4}(x-x^2)^2$$

$$= \left(\frac{\pi - 2}{4}\right)(x^2 - 2x^3 + x^4)$$

✓ subtract areas

√ common factor

(5)

10.2.2 Area of shaded region

$$= \frac{(\pi - 2)}{4} \left(x^4 - 2x^3 + x^2\right)$$

$$\frac{dA}{dx} = \left(\frac{\pi - 2}{4}\right) \left(4x^3 - 6x^2 + 2x\right)$$

$$4x^3 - 6x^2 + 2x = 0$$

$$x(2x^2 - 3x + 1) = 0$$

$$x(2x - 1)(x - 1) = 0$$

$$x \neq 0 \quad \text{or} \quad x = \frac{1}{2} \quad \text{or} \quad x \neq 1$$

$$\checkmark \left(\frac{\pi-2}{4}\right) \left(4x^3-6x^2+2x\right)$$

√ factors

$$\checkmark x = 0; x = 1; x = \frac{1}{2}$$

$$\checkmark x = \frac{1}{2} \tag{4}$$

[13]